找回密码
 会员注册
查看: 15|回复: 0

美团视觉GPU推理服务部署架构优化实践

[复制链接]

2万

主题

0

回帖

6万

积分

超级版主

积分
69864
发表于 2024-10-9 06:17:52 | 显示全部楼层 |阅读模式
总第551篇2023年 第003篇面对在线推理服务使用的GPU资源不断增加、GPU利用率普遍较低的挑战,美团视觉研发团队决定通过模型结构拆分和微服务化进行优化,他们提出了一种通用高效的部署架构,来解决这种常见的性能瓶颈问题。以“图像检测+分类”服务为例,优化后的服务压测性能指标GPU利用率由40%提升至100%,QPS也提升超过3倍。本文将会重点介绍推理服务部署架构优化的工程实践,希望对大家能有所帮助或启发。0. 导读1. 背景2. 视觉模型服务的特点与挑战2.1 模型优化工具与部署框架2.2 视觉模型特点2.3 视觉推理服务面临的问题与挑战3. GPU服务优化实践3.1 图像分类模型服务优化3.2 图像“检测+分类”模型服务优化4. 通用高效的推理服务部署架构5. 总结与展望 0. 美团视觉面向本地生活服务,在众多场景上落地应用了文字识别、图像质量评价、视频理解等视觉AI技术。此前,在线推理服务使用的GPU资源不断增加,但服务GPU利用率普遍较低,浪费大量计算资源,增加了视觉AI应用成本,这是美团也是很多企业亟需解决的问题。美团视觉智能部通过实验分析发现,造成视觉推理服务GPU利用率低下的一个重要原因是模型结构问题:模型中预处理或者后处理部分CPU运算速度慢,导致推理主干网络无法充分发挥GPU运算性能。基于此,视觉研发团队通过模型结构拆分和微服务化,提出一种通用高效的部署架构,解决这种常见的性能瓶颈问题。目前,该解决方案已经在多个核心服务上成功应用。以“图像检测+分类”服务为例,优化后的服务压测性能指标GPU利用率由40%提升至100%,QPS提升超过3倍。本文将会重点介绍推理服务部署架构优化的工程实践,希望对从事相关工作的同学们有所帮助或启发。?1. 背景?随着越来越多的AI应用进入生产应用阶段,推理服务所需要的GPU资源也在迅速增加。调研数据表明,国内AI相关行业推理服务的资源使用量占比已经超过55%,且比例未来还会持续升高。但很多公司面临的实际问题是,线上推理服务GPU利用率普遍较低,还具备很大的提升空间。而造成服务GPU利用率低的重要原因之一是:推理服务本身存在性能瓶颈,在极限压力情况下也无法充分利用GPU资源。在这种背景下,“优化推理服务性能、提高GPU资源使用效率、降低资源使用成本”具有非常重要的意义。本文主要介绍如何通过架构部署优化,在保证准确率、推理时延等指标的前提下,提升推理服务的性能和GPU利用率。?2. 视觉模型服务的特点与挑战?近年来,深度学习方法在计算机视觉任务上取得显著进展,已经成为主流方法。视觉模型在结构上具有一些特殊性,如果使用现有推理框架部署,服务在性能和GPU利用率方面可能无法满足要求。2.1 模型优化工具与部署框架深度学习模型部署前通常会使用优化工具进行优化,常见的优化工具包括TensorRT、TF-TRT、TVM和OpenVINO等。这些工具通过算子融合、动态显存分配和精度校准等方法提高模型运行速度。模型部署是生产应用的最后一环,它将深度学习模型推理过程封装成服务,内部实现模型加载、模型版本管理、批处理以及服务接口封装等功能,对外提供RPC/HTTP接口。业界主流的部署框架有以下几种:TensorFlow Serving:TensorFlow Serving(简称TF-Serving)是Google发布用于机器学习模型部署的高性能开源框架,内部集成了TF-TRT优化工具,但是对非TensorFlow格式的模型支持不够友好。Torch Serve:TorchServe是AWS和Facebook联合推出的Pytorch模型部署推理框架,具有部署简单、高性能、轻量化等优点。Triton:Triton是Nvidia发布的高性能推理服务框架,支持TensorFlow、TensorRT、PyTorch和ONNX等多种框架模型,适用于多模型联合推理场景。在实际部署中,无论选择哪种框架,需要同时考虑模型格式、优化工具、框架功能特点等多种因素。2.2 视觉模型特点与传统方法不同, 深度学习是一种端到端的方法,不需要单独设计特征提取、分类器等模块,用单个模型取代传统方法多模块任务。深度学习模型在分类、检测、分割、识别等视觉任务上呈现出巨大优势,做到了传统方法无法达到的精度。常用的视觉分类模型(如ResNet、GoogleNet等)和检测模型(如YOLO、R-FCN等)具有如下特点:网络层数多(适合用GPU运算):以ResNet-50为例,网络包含49个卷积层和1个全连接层,参数量高达2千5百万,计算量达到38亿FLOPs(浮点运算数)。模型推理包含大量矩阵计算,适合用GPU并行加速。输入图像尺寸固定(需要预处理):同样以ResNet-50为例,网络的输入是图像浮点类型矩阵,尺寸大小固定为224x224。因此二进制编码图片在送入网络前,需要做解码、缩放、裁切等预处理操作。2.3 视觉推理服务面临的问题与挑战由于视觉模型存在的上述特点,导致模型在部署和优化上存在2个问题:模型优化不彻底:TensorRT、TF-TRT等工具主要针对主干网络优化,但忽略了预处理部分,因此整个模型优化并不充分或者无法优化。例如分类模型中ResNet-50所有网络层都可以被优化,但预处理中的图像解码(通常是CPU运算)操作"tf.image.decode"会被TF-TRT忽略跳过。多模型部署困难:视觉服务经常存在组合串接多个模型实现功能的情况。例如在文字识别服务中,先通过检测模型定位文字位置,然后裁切文字所在位置的局部图片,最后送入识别模型得到文字识别结果。服务中多个模型可能采用不同训练框架,TF-Serving或Troch Serve推理框架只支持单一模型格式,无法满足部署需求。Triton支持多种模型格式,模型之间的组合逻辑可以通过自定义模块(Backend)和集成调度(Ensemble)方式搭建,但实现起来较为复杂,并且整体性能可能存在问题。这两点常见的模型部署问题,导致视觉推理服务存在性能瓶颈、GPU利用率低,即便Triton这种高性能部署框架也难以解决。通用部署框架重点关注的是“通信方式、批处理、多实例”等服务托管方面的性能问题,但如果模型本身中间某个部分(如图像预处理或后处理)存在瓶颈,优化工具也无法优化,就会出现“木桶效应”,导致整个推理过程性能变差。因此,如何优化推理服务中的模型性能瓶颈,仍然是一件重要且具有挑战性的工作。?3. GPU服务优化实践?分类和检测是两种最基础的视觉模型,常应用在图像审核、图像标签分类和人脸检测等场景。下面以两个典型服务为案例,单个分类模型和“分类+检测”多模型组合的使用情况,来介绍具体性能的优化过程。3.1 图像分类模型服务优化美团每天有千万量级的图片需要审核过滤有风险内容,人工审核成本太高,需要借助图像分类技术实现机器自动审核。常用的分类模型结构如图1,其中预处理部分主要包括“解码、缩放、裁切”等操作,主干网络是ResNet-50。预处理部分接收图像二进制流,生成主干网络需要的矩阵数据Nx3x224x224(分别代表图片数量、通道数、图像高度和图像宽度 ),主干网络预测输出图片分类结果。图1 图像分类模型结构示意图模型经过TF-TRT优化后的实际结构如下图2所示,主干网络ResNet被优化为一个Engine,但预处理部分的算子不支持优化,所以整个预处理部分仍然保持原始状态。图2 图像分类模型TF-TRT优化结构图3.1.1 性能瓶颈模型经过TF-TRT优化后使用TF-Serving框架部署,服务压测GPU利用率只有42%,QPS与Nvidia官方公布的数据差距较大。排除TF-TRT和Tensorflow框架等可能影响的因素,最终聚焦在预处理部分。Nvidia进行性能测试的模型没有预处理,直接输入Nx3x224x224矩阵数据。但这里的线上服务包含了预处理部分,压测指标CPU利用率偏高。查看模型中各个算子的运行设备,发现模型预处理大部分是CPU运算,主干网路是GPU运算(具体细节参见图1)。如下图3所示,通过NVIDIA Nsight System(nsys)工具查看模型运行时的CPU/GPU执行情况,可以发现GPU运行有明显间隔,需要等待CPU数据准备完成并拷贝到GPU上,才能执行主干网络推理运算,CPU处理速度慢导致GPU处于饥饿状态。结合服务压测的CPU/GPU利用率数据可以看出:预处理部分CPU消耗高、处理速度慢,是推理服务的性能瓶颈。图3 分类模型nsys性能诊断图3.1.2 优化方法如下图4所示,针对预处理CPU消耗过高影响推理服务性能的问题,提出几种优化方法:图4 优化方法对比增加CPU:增加机器CPU数量是最简单的做法,但是受限于服务器硬件配置,1个GPU通常只配置8个CPU。所以增加CPU的方法只能用于性能测试数据对比,无法实际应用部署。前置预处理:大尺寸图片的解码、缩放操作CPU消耗较高,相较而言小尺寸图片的处理速度会快很多。因此考虑对输入图片提前进行预处理,将预处理后的小图再送入服务。经过验证Tensorflow中缩放、裁切操作具有叠加不变性,即多次操作和单次操作对最终结果没有影响。预处理后的小图像经过编码后,再送入原始分类服务。需要注意的是图像编码必须选择无损编码(如PNG),否则会导致解码数据不一致,引起预测误差。前置预处理方式的优点是不需要修改原始模型服务,可操作性高、预测结果没有误差。缺点是需要重复预处理,导致整体流程时延增加、CPU资源浪费。分离预处理:另外一种思路是将模型预处理部分和主干网络拆分,预处理部分单独部署到CPU机器上,主干网络部署到GPU机器上。这种做法让CPU预处理服务可以水平无限扩容,满足GPU处理数据供给,充分利用GPU性能。更重要的是将CPU和GPU运算进行解耦,减少了CPU-GPU数据交换等待时间,理论上比增加CPU数量效率更高。唯一需要考虑的是服务间的通信效率和时间,裁切后图像大小为224x224x3,采用无符号整型类型数据大小是143KB,传输时间和带宽在1万QPS以下没有问题。3.1.3 优化结果如下图5所示,我们利用NVIDIA Nsight System,对比上述几种方法优化后的模型运行情况。增加CPU和前置预处理的方法都可以缩短CPU预处理时间,减少GPU数据等待时间,提升GPU利用率。但相较而言,分离预处理的方法优化更加彻底,CPU到GPU的数据拷贝时间最短,GPU利用最为充分。图5 优化方法nsys性能诊断对比图各种方法优化后的线上服务压测性能结果见下图6(其中前置预处理和分离预处理中的CPU预处理服务额外使用16个CPU),机器配置的CPU型号是Intel(R) Xeon(R) Gold 5218 CPU@2.30GHz、GPU型号是Tesla T4。从压测结果可以看出:图6 优化结果性能对比1. 服务CPU增加到32核,QPS和GPU利用率(通过nvidia-smi命令获取的GPU-Util指标)提升超过1倍,GPU利用率提升至88%;2. 前置预处理方法优化后服务QPS提升超过1倍,略优于增加CPU的方法,但从GPU利用率角度看仍有较大优化空间;3. 分离预处理方法优化后QPS提升2.7倍,GPU利用率达到98%接近满载状态。增加CPU并不能完全解决服务性能瓶颈问题,虽然GPU利用率达到88%,但是CPU-GPU数据传输时间占比较大,QPS提升有限。前置预处理方法也没有完全解决预处理性能瓶颈问题,优化并不彻底。相较而言,分离预处理方法充分发挥了GPU运算性能,在QPS和GPU利用率指标上都取得了更好的优化效果。3.2 图像“检测+分类”模型服务优化在一些复杂任务场景下(如人脸检测识别、图像文字识别等),通常是检测、分割、分类等多个模型组合实现功能。本节介绍的模型便是由“检测+分类”串接而成,模型结构如下图7所示,主要包括以下几个部分:图7 原始模型结构示意图预处理:主要包括图像解码、缩放、填充等操作,输出Nx3x512x512图像矩阵,大部分算子运行在CPU设备上。检测模型:检测网络结构是YOLOv5,算子运行设备为GPU。检测后处理:使用NMS(非极大值抑制)算法去除重复或误检目标框,得到有效检测框,然后裁切目标区域子图并缩放,输出Nx3x224x224图像矩阵,检测后处理大部分算子运行在CPU设备上。分类模型:分类网络结构是ResNet-50,算子运行设备为GPU。其中检测和分类两个子模型是单独训练的,推理时合并成单个模型,部署框架采用TF-Serving,优化工具采用TF-TRT。3.2.1 性能瓶颈模型中预处理和检测后处理大部分是CPU运算,检测和分类模型主干网络是GPU运算,单次推理过程中需要进行多次CPU-GPU之间数据交换。同样地,CPU运算速度慢会导致GPU利用率低,推理服务存在性能瓶颈。实际线上服务压测GPU利用率68%,QPS也存在较大优化空间。服务配置为1GPU+8CPU(机器CPU型号是Intel(R) Xeon(R) Gold 5218 CPU@2.30GHz,GPU型号是Tesla T4)。3.2.2 优化方法仍然采用模型拆分的思路,将CPU和GPU运算部分单独部署微服务。如下图8所示,我们将原始模型拆分为4个部分,预处理和检测后处理部署成CPU微服务(可根据流量大小动态扩容),检测模型和分类模型部署成GPU微服务(同一张GPU卡上)。为了保持调用方式简单,上层采用调度服务串接各个微服务,提供统一调用接口,对上游屏蔽调用差异。拆分后的检测模型和分类模型经过TensorRT优化后采用Triton部署。图8 模型优化部署结构示意图3.2.3 优化结果如下图9所示,除了原始服务和微服务拆分,另外还对比了增加CPU和Triton Ensemble两种方式的性能测试结果。Triton Ensmeble方式将所有子模型(包括预处理和后处理)部署在一个机器上,实现多模型流水线调度。对比可以看出:图9 优化结果性能对比原始服务CPU增加到32核,GPU利用率提升到90%,但QPS提升只有36%;Triton Ensemble方式与原始TF-Serving服务相比性能差距不大;模型拆分微服务方式优化后QPS提升3.6倍,GPU利用率达到100%满载状态。增加CPU的方法对服务GPU利用率提升较大、QPS提升不明显,原因在于CPU预处理和后处理时间缩短,但CPU-GPU数据传输时间在整个推理过程中仍然占比较大,GPU运算时间较少。将模型拆分使用Triton Ensmeble方式部署实现多模型调度流水线,效率并不比模型拆分前高。因为多模型流水线是在同一台机器上,CPU和GPU相互影响的问题并没有解决,GPU处理效率受CPU制约。模型拆分微服务部署方式在服务层面实现了调用流水线,CPU预处理和后处理微服务可以根据流量动态增加资源,满足GPU模型微服务吞吐需求,实现了GPU/CPU处理解耦,避免了CPU处理成为瓶颈。总而言之,拆分微服务的方式充分发挥了GPU运算性能,在QPS和GPU利用率指标上都取得了更好的效果。?4. 通用高效的推理服务部署架构?除了上述两个具有代表性的推理服务优化案例,视觉其它很多服务也采用了这种优化方式。这种优化方式具有一个核心思想:在CPU运算是瓶颈的推理服务中,将模型的CPU和GPU运算部分拆分,单独部署成CPU/GPU微服务。根据这种思想,我们提出一种通用高效的推理服务部署架构。如下图10所示,底层使用通用的部署框架(TF-Serving/Triton等),将模型中CPU运算部分如预处理、后处理拆分单独部署成CPU微服务,主干网络模型部署成GPU服务,上层调度服务串联模型微服务实现整体功能逻辑。图10 通用服务部署架构示意图这里需要解释一个重要问题,为什么这种部署架构是高效的?首先在宏观层面,模型拆分部署成微服务,通过调度服务实现了子模型流水线处理。拆分的子模型CPU微服务可以根据流量和处理能力动态扩容,避免模型预处理或后处理CPU运算能力不足成为性能瓶颈,满足了GPU模型微服务的吞吐需求。其次在微观层面,如果模型包含多个CPU/GPU运算部分,那么GPU运算之间会存在间隔。如下图11所示,单次推理过程中两次GPU运算之间需要等待CPU后处理部分完成,CPU预处理也会影响GPU运算。模型拆分后,预处理和后处理部分独立部署成CPU服务,GPU服务中推理过程仅包含两个子模型运算部分,并且子模型间运算相互独立无数据关联,CPU-GPU数据传输部分可以与GPU运算过程并行,理论上GPU可以达到100%运行效率。图11 推理过程对比示意图另外,在时延方面,拆分微服务的部署方式增加了RPC通信和数据拷贝时间开销,但从实践来看这部分时间占比很小,对端到端的延迟没有显著影响。例如对于上面3.1节中的分类模型,优化前服务的平均耗时是42ms,优化后微服务形式(RPC通信协议为Thrift)的服务整体平均耗时是45ms。对于大部分视觉服务应用场景而言,这种级别的延迟增加通常并不敏感。?5. 总结与展望?本文以两个典型的视觉推理服务为案例,介绍了针对模型存在性能瓶颈、GPU利用率不高的问题进行的优化实践,优化后服务推理性能提升3倍左右,GPU利用率接近100%。根据优化实践,本文提出了一种通用高效的推理服务部署架构,这种架构并不局限于视觉模型服务,其它领域的GPU服务也可参考应用。当然,这种优化方案也存在一些不足,比如优化过程中模型如何拆分比较依赖人工经验或者实验测试,没有实现优化流程的自动化与标准化。后续我们计划建设模型性能分析工具,自动诊断模型瓶颈问题,支持自动拆分优化全流程。?6. 本文作者?| 张旭、赵铮、岸青、林园、志良、楚怡等,来自基础研发平台视觉智能部。?| 晓鹏、駃飞、松山、书豪、王新等,来自基础研发平台数据科学与平台部。----------? END? ----------也许你还想看? 美团BERT的探索和实践? Transformer 在美团搜索排序中的实践? 常识性概念图谱建设以及在美团场景中的应用阅读更多前端??算法?后端?数据安全?Android?iOS??运维?测试
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 会员注册

本版积分规则

QQ|手机版|心飞设计-版权所有:微度网络信息技术服务中心 ( 鲁ICP备17032091号-12 )|网站地图

GMT+8, 2025-1-7 05:49 , Processed in 0.467986 second(s), 25 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表