找回密码
 会员注册
查看: 15|回复: 0

美团外卖推荐智能流量分发的实践与探索

[复制链接]

2万

主题

0

回帖

6万

积分

超级版主

积分
69864
发表于 2024-10-9 04:34:53 | 显示全部楼层 |阅读模式
总第548篇2022年 第065篇美团外卖推荐团队在推荐算法的长期落地实践中,针对外卖业务情境化特点对排序模型进行深入探索与优化。本文介绍了面向情境化建模的“情境细分+统一模型”建模思路,通过用户行为序列建模以及专家网络两个模块的优化,实现不同场景间对信息独有性的刻画和信息共性的相互传递,进而提升全部流量效率。1. 引言2. 问题与挑战3. 情境化智能流量分发3.1 情境化长序列检索3.2 情境化多专家网络4. 总结和展望1. 引言美团外卖推荐服务了数亿用户,通过持续优化用户体验和流量分发精准性,为用户提供品质生活,“帮大家吃得更好,生活更好”。对于“用户”,大家可能会有不同的理解,通常的理解是用户即是自然人。业界主要的推荐场景,如淘宝首页猜你喜欢、抖音快手 Feeds 流推荐等大部分也是这么认为的,在这些电商、短视频等业务中,用户无论何时何地使用推荐服务,他们的需求是大体统一的,商品、信息、视频等供给也是一致的。但实际上,在美团外卖场景下,用户不仅是自然人,更是需求的集合。需求是与情境依存的,也就是有情境就有需求。美团外卖在不同的时间、空间以及其他更广义的环境下,用户需求、商家供给等都有显著区别。因此,本地化、餐饮习惯、即时履约共同构建了美团外卖多种多样的情境,进而衍生出用户多种多样的需求集合,推荐算法情境化可以帮助算法更好地理解并满足不同情境下用户需求。2. 问题与挑战外卖场景具有很强的地理位置和就餐文化约束,用户在不同地点(如公司、住所)的需求有较大差异。而且,所处时间也是决定用户下单的一个关键因素。以北京某地区高消费用户为例,工作日和周末在成单品类、成单价格、成单商家配送距离上有着明显的不同。如下图 1 所示,工作日与周末用户在口味、心态上有明显变化,工作日多为单人餐,以饭类套餐、轻食、米线为主,更加适应工作时的快节奏;而在周末,用户会适当犒劳自己、兼顾家人,倾向于选择更适合多人就餐的烧烤、韩国料理、火锅。从图 1 也可以发现,从工作日到周末时,用户的成单价格中位数由 30 元提高至 50 元,能够接受的配送距离也在变长。图1 某地区高消费用户在工作日和周末的差异性就餐习惯美团外卖推荐需要满足“用户 X 时间 X 地点”等情境下的需求总和,应对需求的不断拓展和演化。为了更好的理解我们所面对的用户需求,如下图 2 所示,将其定义到一个魔方内(Magic Cube),用户、时间和地点是魔方的三个维度。其中,魔方中的每个点,如图 2 中黄色点,代表一个用户在一个特定情境下的需求;魔方中的每个小立方体,如图 2 中黄色立方体,代表一组相似用户在一组相近情境下的需求。此外,在问题定义上,为了支持情境维度的进一步扩展,我们使用超立方体(Hyper Cube)来定义更多维度的用户需求。图2 “用户X时间X地点”等情境下的需求总和面对以上这种三维模式,模型设计是非常棘手的。以往的模型设计,比如用户兴趣建模,或者朴素的多层神经网络无法应对这些复杂的用户、时间和地理环境纠缠在一起的情况。用户兴趣建模通常采用连续建模方法,通过注意力机制提取重要行为偏好信息。但是在用户行为丰富的情况下,模型很难对所有行为进行学习,并且在外卖场景只有一部分历史行为与用户的当次访问高度相关,连续的行为建模会削弱相关部分的信号。此外,朴素的多层神经网络基于全部情境下的数据和标签进行训练,只能学习到整体的数据分布表现,在每个情境下很难达到最佳效果。针对这一问题,阿里 SIM4首先考虑了把行为中的重要相关信息搜索出来进行建模的方式,但他们所要解决的问题在于降低用户超长序列建模的离在线资源消耗,并没有在模型中引入情境特点;蚂蚁 ASEM216、腾讯 CSRec17等通过模型自动化选择不同场景专家网络进行共享或独立学习提升全场景或者多任务模型表现,但是这些工作都只专注于单一维度情境,并没有做更广泛的拓展。针对无限细分的用户情境以及情境的不断拓展和演化,为解决以上挑战,我们提出“情境细分+统一模型”(Segmented and Unified Model)的建模思路。情境细分针对用户特定情境进行针对性建模提升推荐精准度,统一模型将多个相近用户情境进行知识共享和迁移解决情境拓展和演化的问题。具体来说,依据 Cube 中的每个情境,可以从用户历史行为中检索出与当次访问最相关的行为,精确刻画当前情境下的用户偏好。此外,我们设计多个专家网络,让各个专家专注于学习细分情境下的数据分布,然后基于用户、城市、时段、是否周末等情境强相关特征来进行专家的挑选,不同情境可以学习到是否共享某个专家或者学习到与众不同的专家选择分布。对于新用户或者行为不够丰富的用户,借鉴 Cube 的概念,可以考虑从 Cube 中检索出近似情境,并根据近似情境检索出的行为作为用户在当前情境下的兴趣补充,同时对于情境化专家网络,通过模型设计让不同专家专注于自己情境的同时,针对本情境,利用其他情境知识进行知识迁移,这样缓解了新用户冷启动问题以及可能存在的数据稀疏问题。除了依据时间、地点进行情境细分之外,还可以将不同的流量入口(首页、金刚位、活动页)、业务类型(外卖、闪购、医药)都当成一种特殊的“情境”,这样“用户 X 时间 X 地点”可以自然拓展成“用户 X 时间 X 地点 X 入口 X 业务”的高维情境,通过对信息独有性的刻画和信息共性的相互传递,实现全部流量的效率提升。3. 情境化智能流量分发“情境细分+统一模型”的实现思路主要分为用户行为序列建模与专家网络结构两个组成部分,模型整体架构如图 3 所示:图3 情境化智能流量分发模型该模型通过 Cube 检索出特定细分情境下的用户行为进行序列建模,并且通过专家网络模型自动化对不同情境参数进行学习,保持了模型统一,既能刻画情境的独特性,也能实现不同情境间的知识共享和迁移。具体的,在用户行为序列建模上,首先仔细考虑了细粒度行为特征对于外卖商家推荐的重要作用,并以此为基础,根据时间、空间场景对用户序列进行长序列多路情境检索;对于专家网络结构,则先针对不同入口情境建立基于 Attention 机制的多入口情境建模,随后探索了情境化稠密 MMOE 和稀疏 MMOE 模型,发现在外卖场景中,专家网络可以学习到不同情境、不同任务的差别,进而提升模型精度。基于该方案,对于 CTR、CXR(CTCVR)任务,模型在离线指标 AUC、GAUC(perSessionAUC)上均取得了显著提升,并在线上也取得了 UV_RPM、UV_CXR、PV_CTR、曝光新颖性、首购订单占比等指标收益。线上指标计算口径如下:UV_RPM?= 实付交易额(GMV)/曝光人数*1000UV_CXR?= 交易用户数/曝光人数PV_CTR?= 点击次数/曝光次数曝光新颖性?= (A -(A∩B))/ A,该用户当前 session 内曝光的商家集合为 A,该用户 7 天内所有 session 中曝光过的商家集合为 B首购订单占比?= 商家新用户的订单数/总订单数3.1 情境化长序列检索基于深度学习的方法在 CTR 预估任务中取得了巨大成功。早期,大多数工作使用深度神经网络来捕获来自不同领域的特征之间的交互,以便工程师可以摆脱枯燥的特征工程工作。最近,我们称之为用户兴趣模型的一系列工作,专注于从历史行为中学习潜在用户兴趣的表示,使用不同的神经网络架构,如 CNN、RNN、Transformer 和 Capsule 等。DIN1强调用户兴趣是多样的,并引入了注意力机制来捕捉用户对不同目标商品的不同兴趣。DIEN2指出,历史行为之间的时间关系对于建模用户的兴趣漂移很重要,并设计了一个带有辅助损失的 GRU 兴趣提取层。但是,对于美团外卖,基于以上连续建模的方法,难以从用户历史行为中提取出与用户的当次访问情境高度相关的有效信息。MIMN3表明在用户兴趣模型中考虑长期历史行为序列可以显着提高模型的性能。但是较长的用户行为序列包含大量噪声,同时极大地增加了在线服务系统的延迟和存储负担。针对上述问题,SIM4提出把行为中的重要相关信息搜索出来。具体来说,在拿到需要被预估的商品信息后,可以像信息检索一样,对用户行为商品构建一个快速查询的索引。待预估商品的信息可以当做是一个 Query,从用户的所有行为中,查询与其相关的行为子序列。因此,受启发于 MIMN 的超长序列和 SIM 的检索思路,我们设计出情境化序列检索方法,依据 Cube 内的情境,从用户超长的历史行为序列中检索出的与当次访问情境最相关性的用户行为,进而捕获更为精准的用户兴趣。3.1.1 细粒度行为特征不同于电商中的商品推荐形式,美团外卖推荐是以商家为主体,用户从进入商家到最终下单过程中具有更加丰富的细粒度行为,通过捕捉用户在商家中的细粒度行为,可以精细感知到用户差异化偏好,如注重品质商家的用户会更多查看商家/商品描述和评论,而折扣敏感度高的用户则会查看折扣信息、领取优惠券等。工业实践中,用户行为序列特征往往包含商家/商品 ID、品类、价格等商家/商品表示特征,而在行为表示上除了用户到商家的点击之外,用户通过什么页面进入到商家点菜页、用户在商家点菜页中的细粒度行为,同样可以反映用户的偏好。因此,可以对用户从浏览商家到最终下单整个流程进行归纳分析,捕捉用户最细腻的行为并纳入模型,充分学习用户在外卖场景中重要的、最细粒度的行为及其所代表的意图偏好。我们将用户从浏览商家到成单商品的全流程抽取出 70 种不同的 Micro-Behavior,总结归纳出四大步骤:定位商家、考察商家、挑选商品、结算提单。在归纳不同意图的 Micro-Behavior 时,综合考虑了该意图下 Micro-Behavior 的日均 PV、当日转化率、行为跳转路径以及页面展示信息,并剔除了日均 PV 覆盖率小于 1%的 Micro-Behavior,将相同意图的行为聚合到一起作为特征表示(比如评价 Tab 点击、评价标签点击和用户评价缩略图点击聚合成“查看评论”意图表示),最终抽象出 12 种不同意图的 Micro-Behavior,用来捕捉用户更深层次、更细粒度的兴趣。基于用户 Micro-Behavior 提炼出从进入商家到最终下单流程如下图 4 所示:图4 ?用户点外卖过程接下来,我们详细介绍下图 4 中用户点外卖过程的 4 类 12 种 Micro-Behavior。定位商家是指用户进入商家的入口标识,它可以反映出用户对该商家感兴趣的原因;比如从搜索结果页进入代表用户是有较强的购买意愿,相比推荐结果页进店用户有更加清晰的意图。考察商家的行为则包括点击了解商家详情、查看商品评论和查看商家折扣,它可以帮助更好的理解用户的关注点,学生群体可能更注重折扣,而家庭用户可能更加关注商家质量。挑选商品意味着用户对商家的满意度达标了,其中,点击商品和加购商品能够体现出用户对商家不同的感兴趣程度。结算提单则表示该商家能满足用户当前状况下的需求,既包含了对商家的认可,也包含对商家中商品的满意,收藏与分享更是表示出用户对商家的高度欣赏。如下图 5 左所示,9 种不同意图的 Micro-Behavior 的当日转化率存在着明显差异(当日转化定义:用户在商家发生某一 Micro-Behavior 后的自然日内有成单;结算提单意图下 3 种行为由于转化率很高,因此不做展示)。图5 Micro-Behavior和转化率关系分别在用户实时(短周期行为)、历史(长周期行为)商家序列中引入 Micro-Behavior 信息。如下表所示,离线实验数据表明,引入的 Micro-Behavior 信息取得了比较明显的提升。最终,细粒度行为特征在线取得了 UV_RPM+1.77%,PV_CTR+1.05%的收益。离在线实验效果表明引入 Micro-Behavior 信息增加了模型的精准推荐能力。此外,我们进一步对模型是否正确的学习了细粒度行为进行验证。随机选取一个用户的成单商家及其商家序列引入 Micro-Behavior 后 Attention 权重变化,如下图 6 所示,图左上部分表示用户行为序列中的商家以及相应 Micro-Behavior 信息,图右上部分是序列中商家引入 Micro-Behavior 信息后所对应的 Attention 权重可视化,方块颜色越深则表示 Attention 权重越大,图下部分是用户的最终成单商家“鸿鹄一品跷脚牛肉”在引入不同 Micro-Behavior 信息后的商家排名。通过对比序列中商家引入 Micro-Behavior 观察 Attention 权重的变化:图6 引入 Micro-Behavior 和 Attention 权重关系的 Case商家序列输入只有第一列商家信息时,Attention 权重主要由商家 ID、商家 Tag、商家名等信息决定,“一膳牛跷脚牛肉”和“鸿鹄一品跷脚牛肉”商家名、商家 Tag 都较为相似因而权重最大。商家序列输入在商家信息基础上分别增加定位商家、考察商家、挑选商品的丰富行为后,根据右侧相应每个 Micro-Behavior 的 Attention 权重大小可以看到,定位商家这列中搜索进入商家权重最大,而列表页进入(首页 Feed 进入)权重相对较小,符合业务认知;考察商家这列行为中,查看折扣(折扣点击)和查看评论(评论标签点击)表示用户在筛选商家,其 Attention 权重远大于了解商家(店铺摘要下拉)等泛意图点击;挑选商品中的加购点击(加购商品)、搜索商品(搜索商品点击)行为能展现出用户的成单意图,由于该部分信息的丰富,候选商家排名提升至第 6 位。从以上过程中可以看到,引入 Micro-Behavior 的信息越完善,模型对于用户兴趣的理解越是充分,用户最终成单的商家也是能够得以排名靠前。3.1.2 长序列多路情境检索美团外卖上线至今,已经积累了丰富的用户行为数据。将如此丰富的行为信息引入到模型中,是近期工业界和学术界的热门方向,我们在该方向上也进行了一系列探索。最初,我们直接将近三年的点击行为直接引入到模型中来,发现离线效果提升显著,但是带来的训练和推理的压力不可承受。在此基础上,借鉴了 SIM4,将候选商家的品类 ID 当作 Query,先从用户的行为序列中检索出相同品类的商家,再进行兴趣建模,离线取得了不错的收益。具体的,尝试过使用二级品类和叶子品类来分别做检索,在检索后根据分位点进行最大长度截断的情况下,二级品类检索出来的序列平均长度大约为 X,而叶子品类因为品类划分过细,检索出来的序列平均长度大幅减少。根据离线实验评估,最终选择了使用二级品类进行检索,在离线取得了 CXR GAUC+0.30pp 的效果。对于检索条件中,像二级品类和叶子品类这种泛化性与精确性之间的 trade off,我们目前正在进行更进一步的探索。为了进一步提升模型的效果,考虑到用户兴趣建模从 DIN 发展到 SIM,都是根据候选商家、商品的属性,从用户的行为历史中提取对该候选商家、商品的兴趣,这在传统电商场景下是行的通的,因为用户对某一商家、商品的兴趣基本不会随着他所处位置、所处时段改变(用户要买手机壳,不会因为他在家还是在公司有改变,也不会因为他的购物时段是在早上还是晚上而改变)。但是餐饮外卖相较于传统电商,正如前面的问题与挑战中提到的,其鲜明的 LBS 和餐饮文化特色构成多种多样的情境,用户在不同的情境下对于不同的商家、商品的偏好是不一样的,是会变化的。因此,除了建模品类偏好外,还要进一步建模用户的地理位置偏好和时段偏好。对于地理位置偏好的建模,尝试了使用用户当前所处地理位置的 geohash(一种地理位置编码,详见维基百科)/aor_id(蜂窝 ID)作为 Query 来检索用户历史行为中相同 geohash/aor_id 的商家,也根据业务经验,直接从用户的历史行为中将到用户当前请求位置的距离小于 C 公里的商家全部检索出来,检索后序列的平均长度如下表所示,根据离线实验评估,最终选择 distance
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 会员注册

本版积分规则

QQ|手机版|心飞设计-版权所有:微度网络信息技术服务中心 ( 鲁ICP备17032091号-12 )|网站地图

GMT+8, 2025-1-7 06:30 , Processed in 0.472177 second(s), 25 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表