找回密码
 会员注册
查看: 11|回复: 0

ApacheKylin的实践与优化

[复制链接]

2万

主题

0

回帖

7万

积分

超级版主

积分
72545
发表于 2024-10-5 18:43:23 | 显示全部楼层 |阅读模式
总第423篇2020年 第47篇从2016年开始,美团到店餐饮技术团队就开始使用Apache Kylin作为OLAP引擎,但是随着业务的高速发展,在构建和查询层面都出现了效率问题。于是,技术团队从原理解读开始,然后对过程进行层层拆解,并制定了由点及面的实施路线。本文总结了一些经验和心得,希望能够帮助业界更多的技术团队提高数据的产出效率。背景销售业务的特点是规模大、领域多、需求密。美团到店餐饮擎天销售系统(以下简称“擎天”)作为销售数据支持的主要载体,不仅涉及的范围较广,而且面临的技术场景也非常复杂(多组织层级数据展示及鉴权、超过1/3的指标需要精准去重,峰值查询已经达到数万级别)。在这样的业务背景下,建设稳定高效的OLAP引擎,协助分析人员快速决策,已经成为到餐擎天的核心目标。Apache Kylin是一个基于Hadoop大数据平台打造的开源OLAP引擎,它采用了多维立方体预计算技术,利用空间换时间的方法,将查询速度提升至亚秒级别,极大地提高了数据分析的效率,并带来了便捷、灵活的查询功能。基于技术与业务匹配度,擎天于2016年采用Kylin作为OLAP引擎,接下来的几年里,这套系统高效地支撑了我们的数据分析体系。2020年,美团到餐业务发展较快,数据指标也迅速增加。基于Kylin的这套系统,在构建和查询上均出现了严重的效率问题,从而影响到数据的分析决策,并给用户体验优化带来了很大的阻碍。技术团队经过半年左右的时间,对Kylin进行一系列的优化迭代,包括维度裁剪、模型设计以及资源适配等等等,帮助销售业绩数据SLA从90%提升至99.99%。基于这次实战,我们沉淀了一套涵盖了“原理解读”、“过程拆解”、“实施路线”的技术方案。希望这些经验与总结,能够帮助业界更多的技术团队提高数据产出与业务决策的效率。问题与目标销售作为衔接平台和商家的桥梁,包含销售到店和电话拜访两种业务模式,以战区、人力组织架构逐级管理,所有分析均需要按2套组织层级查看。在指标口径一致、数据产出及时等要求下,我们结合Kylin的预计算思想,进行了数据的架构设计。如下图所示:而Kylin计算维度组合的公式是2^N(N为维度个数),官方提供维度剪枝的方式,减少维度组合个数。但由于到餐业务的特殊性,单任务不可裁剪的组合个数仍高达1000+。在需求迭代以及人力、战区组织变动的场景下,需要回溯全部历史数据,会耗费大量的资源以及超高的构建时长。而基于业务划分的架构设计,虽能够极大地保证数据产出的解耦,保证指标口径的一致性,但是对Kylin构建产生了很大的压力,进而导致资源占用大、耗时长。基于以上业务现状,我们归纳了Kylin的MOLAP模式下存在的问题,具体如下:效率问题命中难(实现原理):构建过程步骤多,各步骤之间强关联,仅从问题的表象很难发现问题的根本原因,无法行之有效地解决问题。构建引擎未迭代(构建过程):历史任务仍采用MapReduce作为构建引擎,没有切换到构建效率更高的Spark。资源利用不合理(构建过程):资源浪费、资源等待,默认平台动态资源适配方式,导致小任务申请了大量资源,数据切分不合理,产生了大量的小文件,从而造成资源浪费、大量任务等待。核心任务耗时长(实施路线):擎天销售交易业绩数据指标的源表数据量大、维度组合多、膨胀率高,导致每天构建的时长超过2个小时。SLA质量不达标(实施路线):SLA的整体达成率未能达到预期目标。在认真分析完问题,并确定提效的大目标后,我们对Kylin的构建过程进行了分类,拆解出在构建过程中能提升效率的核心环节,通过“原理解读”、“层层拆解”、“由点及面”的手段,达成双向降低的目标。具体量化目标如下图所示:优化前提-原理解读为了解决效率提升定位难、归因难的问题,我们解读了Kylin构建原理,包含了预计算思想以及By-layer逐层算法。预计算根据维度组合出所有可能的维度,对多维分析可能用到的指标进行预计算,将计算好的结果保存成Cube。假设我们有4个维度,这个Cube中每个节点(称作Cuboid)都是这4个维度的不同组合,每个组合定义了一组分析的维度(如group by),指标的聚合结果就保存在每个Cuboid上。查询时,我们根据SQL找到对应的Cuboid,读取指标的值,即可返回。如下图所示:By-layer逐层算法一个N维的Cube,是由1个N维子立方体、N个(N-1)维子立方体、N*(N-1)/2个(N-2)维子立方体、……N个1维子立方体和1个0维子立方体构成,总共有 2^N个子立方体。在逐层算法中,按照维度数逐层减少来计算,每个层级的计算(除了第一层,由原始数据聚合而来),是基于上一层级的计算结果来计算的。例如:group by [A,B]的结果,可以基于group by [A,B,C]的结果,通过去掉C后聚合得来的,这样可以减少重复计算,当0维Cuboid计算出来的时候,整个Cube的计算也就完成了。如下图所示:过程分析-层层拆解在了解完Kylin的底层原理后,我们将优化的方向锁定在“引擎选择”、“数据读取”、“构建字典”、“分层构建”、“文件转换”五个环节,再细化各阶段的问题、思路及目标后,我们终于做到了在降低计算资源的同时降低了耗时。详情如下表所示:构建引擎选择目前,我们已经将构建引擎已逐步切换为Spark。擎天早在2016年就使用Kylin作为OLAP引擎,历史任务没有切换,仅仅针对MapReduce做了参数优化。其实在2017年,Kylin官网已启用Spark作为构建引擎(官网启用Spark构建引擎),构建效率相较MapReduce提升1至3倍,还可通过Cube设计选择切换,如下图所示:读取源数据Kylin以外部表的方式读取Hive中的源数据,表中的数据文件(存储在HDFS)作为下一个子任务的输入,此过程可能存在小文件问题。当前,Kylin上游数据宽表文件数分布比较合理,无需在上游设置合并,如果强行合并反而会增加上游源表数据加工时间。对于项目需求,要回刷历史数据或增加维度组合,需要重新构建全部的数据,通常采用按月构建的方式回刷历史,加载的分区过多出现小文件问题,导致此过程执行缓慢。在Kylin级别重写配置文件,对小文件进行合并,减少Map数量,可有效地提升读取效率。合并源表小文件:合并Hive源表中小文件个数,控制每个Job并行的Task个数。调整参数如下表所示:Kylin级别参数重写:设置Map读取过程的文件大小。调整参数如下表所示:构建字典Kylin通过计算Hive表出现的维度值,创建维度字典,将维度值映射成编码,并保存保存统计信息,节约HBase存储资源。每一种维度组合,称为一个Cuboid。理论上来说,一个N维的Cube,便有2^N种维度组合。组合数量查看在对维度组合剪枝后,实际计算维度组合难以计算,可通过执行日志(截图为提取事实表唯一列的步骤中,最后一个Reduce的日志),查看具体的维度组合数量。如下图所示:全局字典依赖擎天有很多业务场景需要精确去重,当存在多个全局字典列时,可设置列依赖,例如:当同时存在“门店数量”、“在线门店数量”数据指标,可设置列依赖,减少对超高基维度的计算。如下图所示:计算资源配置当指标中存在多个精准去重指标时,可适当增加计算资源,提升对高基维度构建的效率。参数设置如下表所示:分层构建此过程为Kylin构建的核心,切换Spark引擎后,默认只采用By-layer逐层算法,不再自动选择(By-layer逐层算法、快速算法)。Spark在实现By-layer逐层算法的过程中,从最底层的Cuboid一层一层地向上计算,直到计算出最顶层的Cuboid(相当于执行了一个不带group by的查询),将各层的结果数据缓存到内存中,跳过每次数据的读取过程,直接依赖上层的缓存数据,大大提高了执行效率。Spark执行过程具体内容如下。Job阶段Job个数为By-layer算法树的层数,Spark将每层结果数据的输出,作为一个Job。如下图所示:Stage阶段每个Job对应两个Stage阶段,分为读取上层缓存数据和缓存该层计算后的结果数据。如下图所示:Task并行度设置Kylin根据预估每层构建Cuboid组合数据的大小(可通过维度剪枝的方式,减少维度组合的数量,降低Cuboid组合数据的大小,提升构建效率,本文暂不详细介绍)和分割数据的参数值计算出任务并行度。计算公式如下:Task个数计算公式:Min(MapSize/cut-mb ,MaxPartition) ;Max(MapSize/cut-mb ,MinPartition)MapSize:每层构建的Cuboid组合大小,即:Kylin对各层级维度组合大小的预估值。cut-mb:分割数据大小,控制Task任务并行个数,可通过kylin.engine.spark.rdd-partition-cut-mb参数设置。MaxPartition:最大分区,可通过kylin.engine.spark.max-partition参数设置。MinPartition:最小分区,可通过kylin.engine.spark.min-partition参数设置。输出文件个数计算:每个Task任务将执行完成后的结果数据压缩,写入HDFS,作为文件转换过程的输入。文件个数即为:Task任务输出文件个数的汇总。资源申请计算平台默认采用动态方式申请计算资源,单个Executor的计算能力包含:1个逻辑CPU(以下简称CPU)、6GB堆内内存、1GB的堆外内存。计算公式如下:CPU ?= ?kylin.engine.spark-conf.spark.executor.cores * 实际申请的Executors个数。内存 =(kylin.engine.spark-conf.spark.executor.memory + spark.yarn.executor.memoryOverhead)* 实际申请的Executors个数。单个Executor的执行能力 = kylin.engine.spark-conf.spark.executor.memory / kylin.engine.spark-conf.spark.executor.cores,即:1个CPU执行过程中申请的内存大小。最大Executors个数 = kylin.engine.spark-conf.spark.dynamicAllocation.maxExecutors,平台默认动态申请,该参数限制最大申请个数。在资源充足的情况下,若单个Stage阶段申请1000个并行任务,则需要申请资源达到7000GB内存和1000个CPU,即:CPU:1*1000=1000;内存:(6+1)*1000=7000GB。资源合理化适配由于By-layer逐层算法的特性,以及Spark在实际执行过程中的压缩机制,实际执行的Task任务加载的分区数据远远小于参数设置值,从而导致任务超高并行,占用大量资源,同时产生大量的小文件,影响下游文件转换过程。因此,合理的切分数据成为优化的关键点。通过Kylin构建日志,可查看各层级的Cuboid组合数据的预估大小,以及切分的分区个数(等于Stage阶段实际生成的Task个数)。如下图所示:结合Spark UI可查看实执行情况,调整内存的申请,满足执行所需要的资源即可,减少资源浪费。1. 整体资源申请最小值大于Stage阶段Top1、Top2层级的缓存数据之和,保证缓存数据全部在内存。如下图所示:计算公式:Stage阶段Top1、Top2层级的缓存数据之和
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 会员注册

本版积分规则

QQ|手机版|心飞设计-版权所有:微度网络信息技术服务中心 ( 鲁ICP备17032091号-12 )|网站地图

GMT+8, 2025-1-11 18:33 , Processed in 0.497412 second(s), 26 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表