找回密码
 会员注册
查看: 21|回复: 0

Python辅助-找图功能(你还在用pyautogui?)

[复制链接]

2万

主题

0

回帖

7万

积分

超级版主

积分
71080
发表于 2024-9-9 22:57:50 | 显示全部楼层 |阅读模式
前言在游戏的脚本类辅助中,避免不了一个功能,那就是找图返回图像在屏幕上的坐标,对于找图功能,现成的方法,现成的脚本工具数不胜数,但是至于精度那就不好说了。举个现成方法的例子,在python自动化中,pyautogui有个方法为locateOnScreen(image="图片路径"),其作用为在桌面上找到路径中设置的图片,并返回坐标元组,这个方法能找到图的前提是所传路径图和桌面图完全一致,即必须100%匹配,这是一个缺点也是优点,例如找桌面图标,我图标换个地方摆,它可能就找不到了,因为背景变了。另外举个现成工具例子,在按键精灵中自带找图功能,而且很方便,一般的找图完全适用,且可以设置图像匹配率,但是在某些情况下他还是无法胜任,也是因为某些游戏背景是处于一个动态变换的原因。这里分享一个通过python完成一个可多参数控制的识图功能。涉及的算法不要怕,最后我会将自己封装的工具方法发出来,直接复制粘贴传参就行,要传的参数见下方可控参数。本文章的图像识别主要用到的是基于SIFT检测算法,在图像识别这块,浅度的识别比较知名的有SIFT、SURF、ORB,而SIFT是精度最高的一种,他能在不同尺度、旋转、光照变化和视角变化的情况下都能保持较好的检测性能。可控参数max_init_num:最大搜索系数,范围0.1~1,系数越小精度越高,建议不要高于0.5(我给你建议那就是因为自己测试过),当然我们这里会做成一个从0.1循环搜索图片,自增到我们设置的最大系数。trees:索引树数量,数量越大,精度越高,但相应的耗时越高,建议100checks:索引树遍历次数,数量越大,精度越高,但相应耗时越高,建议1000img_url:即要匹配的图像的路径(注意路径不可含有中文,图片名也不可含有中文)功能目的即在屏幕上找到我们期望的图片,并返回位置信息所需库importosimportcv2importpyautogui正文第一步:获取两张图片数据因为是要在屏幕找图,所以直接用pyautogui直接全屏截图对比即可,截下来的图会自动保存到当前目录,最后面用os删掉就行了语句解释:通过screenshot截取了全屏图片命名为screen.png并放在当前目录下,然后通过cv2.imread分别读取截取的屏幕图的图像数据和我们期望寻找的图像的数据,返回的数据是一个numpy数组,若为彩色图像则是一个三维的numpy数组。pyautogui.screenshot(imageFilename="screen.png")screenPic=cv2.imread("screen.png")img_url=r"C:\testpic\wx.png"myPic=cv2.imread(img_url)第二步:获取两张图关键点和描述符要获取图像的关键点和描述符就需要SIFT对象,通过cv2创建即可,然后经过sift对象的检测和计算获取到两张图的监测点和描述符。sift=cv2.SIFT_create()screenPicKP,screenPicDES=sift.detectAndCompute(screenPic,None)myPicKP,myPicDES=sift.detectAndCompute(myPic,None)第三步:准备匹配器这里就用到了我们所说的可控参数,索引树数量,索引树遍历次数。这里我选择了Flann匹配器,因为简单且直接,对于小型数据集或实时应用运算速度较快。语句解释:如下indexParams表示定义索引数量,searcheParams表示定义单个索引遍历次数,这两个参数是构成Flann匹配器的基本条件,因此再通过cv2.FlannBasedMatcher传入参数就得到了flann匹配器了。trees=100checks=1000indexParams=dict(algorithm=0,trees=int(trees))searcheParams=dict(checks=int(checks))flann=cv2.FlannBasedMatcher(indexParams,searcheParams)第四步:开始匹配获取匹配结果集解释:调用flann匹配器的knn匹配法,传入两张图的描述符数据,k表示要返回的最近邻的数量。然后通过sorted方法根据描述符中特征点的距离distance进行一个排序,因为后面会取中位数作为最优匹配matches=flann.knnMatch(screenPicDES,myPicDES,k=2)matches=sorted(matches,key=lambdax:x[0].distance)第五步:筛选最优匹配输出坐标解释:x,y用于存放最后找到图返回的坐标,没找到就是Nonemax_init_num是我们的可控参数,表示期望最大的匹配率,建议0.3~0.5,过小会找不到,过大会找错。如下定义的循环条件是当初始匹配系数小于我们设置的最大系数时,就不断进行循环查找最优匹配并填充坐标值最后我们通过os移除了截屏的图片x,y=None,Nonemax_init_num=0.4init_num=0.1init_num=float(init_num)whileinit_num
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 会员注册

本版积分规则

QQ|手机版|心飞设计-版权所有:微度网络信息技术服务中心 ( 鲁ICP备17032091号-12 )|网站地图

GMT+8, 2025-1-9 05:50 , Processed in 0.451116 second(s), 26 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表