找回密码
 会员注册
查看: 27|回复: 0

python机器人编程——用pytorch实现六轴机械臂的正向和逆向数值解算,及python算法解析

[复制链接]

2万

主题

0

回帖

7万

积分

超级版主

积分
71916
发表于 2024-9-8 14:56:24 | 显示全部楼层 |阅读模式
目录一、前言二、实现原理2.1正向建模2.2张量化2.3绘制3D动画及操作UI三、结论四、python源码PS.扩展阅读ps1.六自由度机器人相关文章资源ps2.四轴机器相关文章资源ps3.移动小车相关文章资源一、前言前面对六轴(或多轴)机械臂进行了一些研究,特别是利用几何进行简化,实现逆解,来完成比较简单的搬用任务。然而,如果需要比较精确的操作任务,可能需要更加复杂的机械臂解算。其中比较复杂的是数值解算,这种解算往往涉及到比较复杂的机器人运动等原理知识,比较难以上手。但是,python的生态挺全面,已经有很多牛人实现了数值解法,但是去看他们的代码,还是觉得费劲。此外,随着深度神经网络的兴起,很多是用建立深度学习神经网络,去利用机械臂输入输出的大数据,训练机械臂的控制模型,这个上手也比较慢。现在,我们提供一个相对简单的方法,来实现N轴机械臂的数值逆解,我们使用了一个优秀的人工智能库pytorch,只要在建立正向模型的基础上,几行代码就可以实现机械臂的数值逆解,可以供初学者学习之用。二、实现原理2.1正向建模数值解算本质就是解非线性方程组。前提是我们需要把这个方程组給先建立起来。这里需要用到一些DH建模的知识。此部分已经在博文《N轴机械臂的MDH正向建模,及python算法》做了非常细致的讲解,本文不再赘述。通过运算,我们可以把下图的机械臂建立一个模型,所谓正向模型即f(t1,t2,t3,t4,t5,t6),就是输入6个电机的旋转角度,可以得出末端的位姿,这里可以用位姿矩阵表示,也可以用四元素等其它表示。我们根据机械臂实际的尺寸,推导出的正向模型,非常复杂,如下:这个明显是有一堆sin,cos组合的非线性矩阵。如果人去推导,估计得推导10年。2.2张量化金典得非线性方程组解法,可以用迭代法,牛顿,雅可比等。对于数学知识有限的初学者,我们没有那么多时间。我们使用了简单粗暴的玩法,那就是交给pytorch的反向传播,来让它帮我们寻找正确的6个角求解调整方向,并逐步逼近“真相”。#优化器optimizer=torch.optim.Adam([t1,t2,t3,t4,t5,t6],lr=lr)#进行优化forepochinrange(interval)ptimizer.zero_grad()loss=loss_function(t1,t2,t3,t4,t5,t6)loss.backward()optimizer.step()ifepoch%100==0:print(f'Epoch{epoch},Loss{loss.item()}')ifloss.item()
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 会员注册

本版积分规则

QQ|手机版|心飞设计-版权所有:微度网络信息技术服务中心 ( 鲁ICP备17032091号-12 )|网站地图

GMT+8, 2025-1-10 19:14 , Processed in 0.826309 second(s), 26 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表